Invernadero bioclimático y modular para clima cálido: Diseño, construcción, operación y mantenimiento

Palabras clave:
Invernadero, Microclima, Producción agrícola, Simulación numérica, Tasa de ventilación


Edwin Andrés Villagrán Munar Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Jorge Eliécer Jaramillo Noreña Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Andrea Onelia Rodríguez Roa Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Rommel Igor León Pacheco Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Marlón José Yacomelo Hernández Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA


Los datos de descargas todavía no están disponibles.

Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., & Negm, A. (2020). Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability, 12(3), 986.

American Society of Agricultural Engineers [ASAE]. (2003). Heating, ventilating and cooling greenhouses. ASAE Standards 2003.

Baxevanou, C., Fidaros, D., Bartzanas, T., & Kittas, C. (2017). Yearly numerical evaluation of greenhouse cover materials. Computers and Electronic in Agriculture, 149, 54-70.

Bournet, P. E. (2014). Assessing greenhouse climate using CFD: A focus on air humidity issues. Acta Horticulturae, 1037, 971-986.

Bournet, P. E., Morille, B., & Migeon, C. (2017). CFD prediction of the daytime climate evolution inside a greenhouse taking account of the crop interaction, sun path and ground conduction. Acta Horticulturae, 1170, 61-70.

Diaz, D. C., Bojacá, C. R., & Schrevens, E. (2018). Modeling the suitability of the traditional plastic greenhouse for tomato production across Colombian regions. Acta Horticuturae, 1205, 857-864.

Espinal-Montes, V., Lorenzo López-Cruz, I., Rojano-Aguilar, A., Romantchik-Kriuchova, E., & Ramírez-Arias, A. (2015). Determination of night-time thermal gradients in a greenhouse using computational thermal dynamics. Agrociencia, 49(3), 233-247.

He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2017). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149, 16-25.

Hemming, S., Kempkes, F., Van Der Braak, N., Dueck, T., & Marissen, N. (2006). Greenhouse cooling by NIR-reflection. Acta Horticulturae, 709, 97-106.

Kim, R. W., Hong, S. W., Lee, I. B., & Kwon, K. S. (2017). Evaluation of wind pressure acting on multi-span greenhouses using CFD technique. Part 2: Application of the CFD model. Biosysistems Engineering, 164, 257-280.

Piscia, D., Muñoz, P., Panadès, C., & Montero, J. I. (2015). A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115, 129-141.

Rodríguez, C. E., & Velázquez, J. F. (2019). CFD Simulation of heat and mass transfer for climate control in greenhouses. Heat and Mass Transfer-Advances in Science and Technology Applications.

Rojano, F., Flores-Velázquez, J., Villarreal-Guerrero, F., & Rojano, A. (2014). Dynamics of climatic conditions in a greenhouse: Two locations in Mexico. Acta Horticulturae, 1037, 955-962.

Senhaji, A., Mouqallid, M., Majdoubi, H., Senhaji, A., Mouqallid, M., & Majdoubi, H. (2019). CFD Assisted study of multi-chapels greenhouse vents openings effect on inside airflow circulation and microclimate patterns. Open Journal on Fluid Dynamics, 9, 119-139.

Teitel, M., & Wenger, E. (2014). Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosysistems Engineering, 119, 98-107.

Villagrán, E. A., Gil, R., Acuña, J. F., & Bojacá, C. R. (2012). Agronomía colombiana. Agronomía Colombiana.

Villagrán, E., Bojacá, C. R., & Bahamón, N. A. (2018). Determinacion del comportamiento térmico de un invernadero espacial colombiano mediante dinámica de fluidos computacional. Revista UDCA. Actualidad y Divulgación Científica. 21(2), 415-426.

Villagrán, E., & Bojacá, C. (2019). CFD Simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior. International Journal of Heat and Technology, 37(3), 881-892.

Villagrán, E., & Bojacá, C. (2019). Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133-143.

Villagrán, E. A., Baeza Romero, E. J., & Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304.

Villagrán, E., León, R., Rodriguez, A., & Jaramillo, J. (2020). 3D numerical analysis of the natural ventilation behavior in a Colombian greenhouse established in warm climate conditions. Sustainability, 12(19), 8101.

Villagrán, E. (2021). Implementation of ventilation towers in a greenhouse established in low altitude tropical climate conditions: numerical approach to the behavior of the natural ventilation. Revista Ceres, 68(1), 10-22.

Villagrán, E., Bojacá, C., & Akrami, M. (2021). Contribution to the sustainability of agricultural production in greenhouses built on slope soils: A numerical study of the microclimatic behavior of a typical Colombian structure. Sustainability, 13(9), 4748.

Vivekanandan, M., Periasamy, K., Dinesh Babu, C., Selvakumar, G., & Arivazhagan, R. (2020). Experimental and CFD investigation of six shapes of solar greenhouse dryer in no load conditions to identify the ideal shape of dryer. Materials Today: Proceedings, 37 (2), 1409-1416.

Cubierta Invernadero Bioclimático
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Detalles sobre este monográfico

ISBN-10 (02)