Manual para el diagnóstico de cadmio en el cultivo de arroz (Oryza sativa L.) y su inmovilización mediante el uso de hongos formadores de micorrizas arbusculares

Palabras clave:
Oryza sativa, Cadmio, Control de la contaminación, Micorrizas arbusculares, Hongos del suelo, Contaminación del suelo

Autores

María Margarita Ramírez Gómez, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Nesrine Chaali, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Diana Paola Serralde Ordóñez, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
Andrea María Peñaranda Rolón, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
José Isidro Beltrán Medina, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA

Descargas

Los datos de descargas todavía no están disponibles.

Abdelhameed, R. E., & Metwally, R. A. (2019). Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. International Journal of Phytoremediation, 21(7), 663-671. https://doi.org/10.1080/15226514.2018.1556584

Adler, K. P., Söderström, M., Eriksson, J., & Alshihabi, O. (2020). Predictions of Cu, Zn, and Cd concentrations in soil using portable X-ray fluorescence measurements. Sensors, 20(2), 1-15. https://doi.org/10.3390/s20020474

Adriano, D. C. (2001). Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability, and Risks of Meta (2.a ed.). Springer. https://doi.org/10.1007/978-0-387-21510-5

Aibibu, N., Liu, Y., Zeng, G., Wang, X., Chen, B., Song, H., & Xu, L. (2010). Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical parameters. Bioresource Technology, 101(16), 6297-6303. https://doi.org/10.1016/j.biortech.2010.03.028

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075

Alvarado, C., Dasgupta-Schubert, N., Ambriz, E., Sánchez-Yañez, J., & Villegas, J. (2011). Hongos micorrízicos arbusculares y la fitorremediación de plomo. Revista Internacional de Contaminación Ambiental, 27(4), 357-364.

Anjum, N. A., Umar, S., Ahmad, A., Iqbal, M., & Khan, N. A. (2008). Sulphur protects mustard Brassica campestris L. from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regulation, 54(3), 271-279. https://doi.org/10.1007/s10725-007-9251-6

Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation-A review. Earth-Science Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005

Arriagada, C., Pereira, G., García-Romera, I., & Ocampo, J. A. (2010). Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus desertícola and Trametes versicolor or Coriolopsis rigida. Soil Biology and Biochemistry, 42(1), 118-124. https://doi.org/10.1016/j.soilbio.2009.10.011

Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M., e Irshad, M. K. (2016). Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat Triticum aestivum L. under Cd stress. Archives of Agronomy and Soil Science, 62(4), 533-46. https://doi.org/10.1080/03650340.2015.1064903

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. https://doi.org/10.3390/ijerph14010094

Azcón, R., Peralvarez, M. del C., Biro, B., Roldán, A., & Ruiz-Lozano, J. M. (2009). Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Applied Soil Ecology, 41(2), 168-177. https://doi.org/10.1016/j.apsoil.2008.10.008

Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10(8), 484. https://doi.org/10.3390/toxics10080484

Balestrasse, K. B., Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2003). Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional Plant Biology, 30(1), 57-64. https://doi.org/10.1071/FP02074

Barea, J. M. (1991). Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. En B. S. Stewart (Ed.), Advances in soil science (pp. 1-40). Springer. https://doi.org/10.1007/978-1-4612-3030-4_1

Bashir, H., Ibrahim, M. M., Bagheri, R., Ahmad, J., Arif, I. A., Baig, M. A., & Qureshi, I. (2015). Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants, 7. https://doi.org/10.1093/aobpla/plv001

Basta, N., & McGowen, S. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter contaminated soil. Environmental Pollution, 127(1), 73-82. https://doi.org/10.1016/S0269-7491(03)00250-1

Becerra, I., Castro, L., Cortés, C., Del Valle, C., Díaz, A., Flórez, A. Fonseca, M., Garcés Aponte, E., García Márquez, E., Giraldo, J. A., Gómez Mojica, J., González, A. C., Gutiérrez Melo, E., Maluendas, A., Méndez Plazas, D., Quintero, L. E., Reina Burgos, D. M., Ríos Ortegón, M., Rodríguez Vásquez, A. F., Sandoval Sáenz, L. F., Samacá, H. A., …Viveros, J. (2020). Plan de Ordenamiento Productivo para el desarrollo, estabilidad y especialización de la cadena arrocera colombiana 2020-2038. Unidad de Planificación Rural Agropecuaria (UPRA). https://www.minagricultura.gov.co/Normatividad/Resoluciones/RESOLUCI%C3%93N%20NO.%20000077%20DE%202021.pdf

Bissonnette, L., St-Arnaud, M., & Labrecque, M. (2010). Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332, 55-67. https://doi.org/10.1007/s11104-009-0273-x

Bonfante, P., & Genre, A. (2008). Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective. Trends in Plant Science, 13(9), 492-498. https://doi.org/10.1016/j.tplants.2008.07.001

Booboori, M. R., & Zhang, H. Y. (2022). Arbuscular mycorrhizal fungi are an influential factor in improving the phytoremediation of Arsenic, Cadmium, lead, and Chromium. Journal of Fungi, 8(2), 176. https://doi.org/10.3390/jof8020176

Bose, S., & Bhattacharyya, A. K. (2008). Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 70(1), 1264-1272. https://doi.org/10.1016/j.chemosphere.2007.07.062

Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Soence, 168(4), 521-30. https://doi.org/10.1002/jpln.200420485

Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60(3), 365-371. https://doi.org/10.1016/j.chemosphere.2004.11.098

Chaali, N., Bravo, D., Ouazaa, S., Jaramillo-Barrios, C. I., Beltrán-Medina, J. I., Serralde-Ordoñez, D. P., & Benavides-Erazo, J. (2022). New insights into arsenic and cadmium distribution and origin in paddy soils using electrical resistivity tomography. Journal of Applied Geophysics, 202, 104638. https://doi.org/10.1016/j.jappgeo.2022.104638

Chang, Q., Diao, F.-W., Wang, Q.-F., Pan, L., Dang, Z.-H., & Guo, W. (2018). Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environmental Pollution, 241, 607-615. https://doi.org/10.1016/j.envpol.2018.06.003

Chang, W., Sui, X., Fan, X. X., Jia, T. T., & Song, F. Q. (2018). Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in saltstressed Elaeagnus angustifolia seedlings. Frontiers in Microbiology, 9, 652. https://doi.org/10.3389/fmicb.2018.00652

Chen, B. D., Liu, Y., Shen, H., Li, X. L., & Christie, P. (2004). Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 14, 347-354. https://doi.org/10.1007/s00572-003-0281-2

Chen, B., Nayuki, K., Kuga, Y., Zhang, X., Wu, S., & Ohtomo, R. (2018). Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes and Environments, 33(3), 257-263. https://doi.org/10.1264/jsme2.ME18010

Chen Y., Shen Z., & Li X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19(10), 1553-1565. https://doi.org/10.1016/j.apgeochem.2004.02.003

Chen, Y. X., Wang, Y. P., Wu, W. X., Lin, Q., & Xue, S. G. (2006). Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Science of The Total Environment, 356(1-3), 247-255. https://doi.org/10.1016/j.scitotenv.2005.04.028

Chu, Y., Liu, S., Wang, F., Cai, G., & Bian, H. (2017). Estimation of heavy metalcontaminated soils' mechanical characteristics using electrical resistivity. Environmental Science and Pollution Research, 24(15), 13561-13575. https://doi.org/10.1007/s11356-017-8718-x

Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309-315. https://doi.org/10.1016/S1360-1385(02)02295-1

Codex Alimentarius. (2015). Norma general para los contaminantes y las toxinas presentes en alimentos y piensos. https://www.fao.org/fao-whocodexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193s.pdf

Colangelo, E. P., & Guerinot, M. L. (2006). Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9(3), 322-330. https://doi.org/10.1016/j.pbi.2006.03.015

Coudert, Y., Périn, C., Courtois, B., Khong, N. G., & Ganet, P. (2010). Genetic control of root development in rice, the model cereal. Trends in Plant Science, 15(4), 219-226. https://doi.org/10.1016/j.tplants.2010.01.008

Cui, G., Ai, S., Chen, K., & Wang, X. (2019). Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicology and Environmental Safety, 171, 231-239. https://doi.org/10.1016/j.ecoenv.2018.12.093

Cui, S., Zhou, Q.-x., Wei, S.-h., Zhang, W., Cao, L., & Ren, L.-p. (2007). Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. Journal of Hazardous Materials. 146: 341-346. https://doi.org/10.1016/j.jhazmat.2006.12.028

Degiovanni Beltramo, V. M., Berrío Orozco, L. E.,, & Charry Mercado, R. E. (2010). Origen, taxonomía, anatomía y morfología de la planta de arroz (Oryza sativa L.). En V. M. Degiovanni Beltramo, C. P. Martínez Racines, & F. Motta O. (Eds.), Producción eco-eficiente del arroz en América Latina (pp. 35-59). Centro Internacional de Agricultura Tropical (CIAT).

Departamento Administrativo Nacional de Estadística [DANE]. (2021a). Encuesta Nacional de Arroz Mecanizado (ENAM). I Semestre 2021. https://www.dane.gov.co/files/investigaciones/boletines/aiquierletin_ENAM_Isem21.pdf

Departamento Administrativo Nacional de Estadística [DANE]. (2021b). Encuesta Nacional de Arroz Mecanizado. II Semestre 2021. https://www.dane.gov.co/files/investigaciones/boletines/arroz/boletin_ENAM_IIsem21.pdf

Devi, R., Munjral, N., Gupta, A. K., & Kaur, N. (2007). Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environmental and Experimental Botany, 61(2), 167-174. https://doi.org/10.1016/j.envexpbot.2007.05.006

Dos Santos, J. V., Varón-López, M., Sousa Soares, C. R. F., López Leal, P., Iquieraueira, J. O., & De Souza Moreira, F. M. (2016). Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research, 23, 6735-6748. https://doi.org/10.1007/s11356-015-5904-6

Drzewiecka, K., Mleczek, M., Gąsecka, M., Magdziak, Z., & Goliński, P. (2012). Changes in Salix viminalis L. cv. 'Cannabina'morphology and physiology in response to nickel ions - Hydroponic investigations. Journal of Hazardous Materials, 217-218, 429-438. https://doi.org/10.1016/j.jhazmat.2012.03.056

Embrapa Arroz e Feijão. (2022). Dados conjunturais da produção de arroz (Oryza sativa L.) no Brasil (1986 a 2021): área, produção e rendimento. http://www.cnpaf.embrapa.br/socioeconomia/index.htm

Enerijiofi, K. E. (2021). Bioremediation of environmental contaminants: A sustainable alternative to environmental management. En G. Saxena, V. Kumar, & M. P. Shah (Eds.), Bioremediation for Environmental Sustainability. Toxicity, Mechanisms of Contaminants Degradation, Detoxification, and Challenges (pp. 461-480). Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00019-5

Facts on Health and the Environment [GreenFacts]. (2023). Bioacumulación. https://www.greenfacts.org/es/glosario/abc/bioacumulacion-bioacumular.htm#:~:text=Definici%C3%B3n%3A,suelo%2C%20aire%20y%20agua).

Federación Nacional de Arroceros [Fedearroz]. (2011). El sector arrocero de los llanos. En Dinámica el sector arrocero de los llanos orientales de Colombia (pp. 33-64). Produmedios. https://fedearroz.s3.amazonaws.com/media/documents/Dinamica_del_sector_arrocero_en_los_Llanos_orientales.pdf

Federación Nacional de Arroceros [Fedearroz]. (2021). Área sembrada de arroz mecanizado (hectáreas) según zona arrocera, total año. https://fedearroz.com.co/es/fondo-nacional-del-arroz/investigaciones-economicas/estadisticas-arroceras/area-produccion-y-rendimiento/

Federación Nacional de Arroceros [Fedearroz]. (2022). Consumo. https://fedearroz.com.co/es/fondo-nacional-del-arroz/investigaciones-economicas/estadisticas-arroceras/consumo/

Federación Nacional de Cafeteros [FNC]. (2022). Estadísticas cafeteras. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/

Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya [Fenalcce]. (2022). Estadísticas. https://fenalce.co/estadisticas/#boletin

Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications, Journal of Experimental Botany, 67(22), 6253-6265 403. https://doi.org/10.1093/jxb/erw403

Gai, J., Fan, J., Zhang, S., Mi, N., Christie, P., Li, X., & Feng, G. (2018). Direct effects of soil cadmium on the growth and activity of arbuscular mycorrhizal fungi. Rhizosphere, 7, 43-48. https://doi.org/10.1016/j.rhisph.2018.07.002

Gandia, A. (2013). Decoding the mycorrhizal symbiosis: why plants like fungi so much. https://fungicultura.wordpress.com/2013/01/08/decoding-the-mycorrhizal-symbiosis-why-plants-like-fungi-somuch/#:~:text=Mycorrhizal%20fungi%20help%20plants%20acquire,where%20more%20nutrients%20are%20available

Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. Journal of Plant Growth Regulation, 31, 292-308. https://doi.org/10.1007/s00344-011-9239-3

Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signaling & Behavior, 6(2), 215-222. https://doi.org/10.4161/psb.6.2.14880

Gil-Cardeza, M. L., Ferri, A., Cornejo, P., & Gómez, E. (2014). Distribution of chromium species in a Cr-polluted soil: presence of Cr (III) in glomalin related protein fraction. Science of The Total Environment, 493, 828-833. https://doi.org/10.1016/j.scitotenv.2014.06.080

Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R., Leinweber, P., Eckhardt, K. U., Regier, T., & Blyth, R. I. (2011). Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43(4), 766-777. https://doi.org/10.1016/j.soilbio.2010.12.010

Godlbold, D. L., & Sharrock, L. (2003). Mycorrhizas. En G. Schroth, & F. L. Sinclair (Ed.), Trees, Crops and Soil Fertility. Concepts and Research Methods (pp. 271-287). CABI Publishing. https://doi.org/10.1079/9780851995939.0271

González-Chávez, C., D'Haen. J., Vangronsveld, J., & Dodd, J. C. (2002). Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil, 240, 287-297. https://doi.org/10.1023/A:1015794622592

González-Chávez, M. C. A., Gutiérrez-Castorena, M. C., & Wright, S. (2004). Hongos micorrízicos arbusculares en la agregación del suelo y su estabilidad. Terra Latinoamericana, 22(4), 507-514.

González-Chávez, M. D. C. A., del Pilar Ortega-Larrocea, M., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gómez, S. K., Harrison, M. J., Figueroa-López, A. M., & Maldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biology, 115(12), 1197-1209. https://doi.org/10.1016/j.funbio.2011.08.005

González Guerrero, M. (2005). Estudio de los mecanismos implicados en la homeostasis de metales pesados en el hongo formador de micorrizas arbusculares Glomus intrarradices [Tesis de doctorado, Universidad de Granada]. https://digibug.ugr.es/handle/10481/626

González-Guerrero, M., Melville, L. H., Ferrol, N., Lott, J. N. A., Azcón-Aguilar, C., & Peterson, R. L. (2008). Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology, 54(2), 103-110. https://doi.org/10.1139/W07-119

Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., González, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370-378. https://doi.org/10.1016/j.scitotenv.2017.08.145

Guerrero Forero, E., & Azcon, C. (1996). Micorrizas: recurso biológico del suelo. Fondo FEN.

Hamel, C., & Plenchette, C (Eds.). (2007). Mycorrhizae in crop production. Haworth Press. https://doi.org/10.1201/9781482277845

Hamon, R. E., McLaughlin, J. M., & Cozens, G. (2002). Mechanisms of attenuation of metal availability in in situ remediation treatments. Environmental, Science & Technology, 36(18), 3991-3996. https://doi.org/10.1021/es025558g

Hanesch, M., & Scholger, R. (2002). Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 42, 857-870. https://doi.org/10.1007/s00254-002-0604-1

Hartley, W., Edwards, R., & Lepp, N. W. (2004). Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and longterm leaching tests. Environmental Pollution, 131(3), 495-504. https://doi.org/10.1016/j.envpol.2004.02.017

Hause, B., & Schaarschmidt, S. (2009). The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry, 70(13-14), 1589-1599. https://doi.org/10.1016/j.phytochem.2009.07.003

Hernández-Baranda, Y., Rodríguez-Hernández, P., Peña-Icart, M., Meriño-Hernández, Y., & Cartya-Rubio, O. (2019). Toxicity of Cadmium in plants and strategies to reduce its effects. Case study: The tomato. Cultivos Tropicales, 40(3), e10.

Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochem, 68(1), 139-146. https://doi.org/10.1016/j.phytochem.2006.09.023

Hu, Z.-H., Zhuo, F., Jing, S.-H., Li, X., Yan, T. X., Lei, L. L., Lu, R. R., Zhang, X. F., & Jing, Y. X. (2019). Combined application of arbuscular mycorrhizal fungi and steel slag improves plant growth and reduces Cd, Pb accumulation in Zea mays. International Journal of Phytoremediation, 21(9), 857-865. https://doi.org/10.1080/15226514.2019.1577355

Huang, Q., Yu, Y., Wan, Y., Wang, Q., Luo, Z., Qiao, Y., Su, D., & Li, H. (2018). Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). Journal of Environmental Management, 215, 13-21. https://doi.org/10.1016/j.jenvman.2018.03.036

Huaraca-Fernández, J. N., Pérez-Sosa, L., Bustinza-Cabala, L. S., & Pampa-Quispe, N. B. (2020). Enmiendas orgánicas en la inmovilización de cadmio en suelos agrícolas contaminados: una revisión. Información Tecnológica, 31(4), 139-152. https://doi.org/10.4067/S0718-07642020000400139

Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G. T., Vandamme, D., & Cuypers, A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany, 177, 104120. https://doi.org/10.1016/j.envexpbot.2020.104120

Ilag, L. L., Rosales, A. M., Elaegvi, F. V., & Mew, T. W. (1987). Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system. Plant and Soil, 103, 67-73. https://doi.org/10.1007/BF02370669

International Rice Research institute. (1983). Anual Report for 1983. https://pdf.usaid.gov/pdf_docs/PNAAS325.pdf

Instituto de Hidrología, Meteorología y Estudios Ambientales [Ideam]. (2004). Informe anual sobre el estado del medio ambiente y los recursos naturales renovables en Colombia.

Janoušková, M., & Pavlíková, D. (2010). Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant and Soil, 332, 511-520. https://doi.org/10.1007/s11104-010-0317-2

Jiang, Q. Y., Tan, S. Y., Zhuo, F., Yang, D. J., Ye, Z. H., & Jing, Y. X. (2016). Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology, 98, 112-120. https://doi.org/10.1016/j.apsoil.2015.10.003

Jiang, Q. Y., Zhuo, F., Long, S. H., Zhao, H. D., Yang, D. J., Ye, Z. H., Li, S. S., & Jing, Y. X. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Science Reports, 6, 21805. https://doi.org/10.1038/srep21805

Jiménez Heinert, M. E., Grijalva Endara, A. de las M., & Ponce Solórzano, H. X. (2020). Plasma acoplado inductivamente en espectroscopia de emisión óptica (ICP-OES). Recimundo, 4(4), 4-12. https://doi.org/10.26820/recimundo/4.(4).octubre.2020.4-12

Joos, L., & De Tender, C. (2022). Soil under stress: The importance of soil life and how it is influenced by (micro) plastic pollution. Computational and Structural Biotechnology Journal, 20, 1554-1566. https://doi.org/10.1016/j.csbj.2022.03.041

Jung, M. C. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors, 8(4), 2413-2423. https://doi.org/10.3390/s8042413

Kao, C. H. (2014). Cadmium stress in rice plants: influence of essential elements. Crop, Environment & Bioinformatics, 11, 113-118.

Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247-268. https://doi.org/10.1016/j.gexplo.2016.11.021

Khalid, F., Hashmi, M. Z., Jamil, N., Qadir, A., & Ali, M. I. (2021). Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: A review. Environmental Science and Pollution Research, 28, 10474-10487. https://doi.org/10.1007/s11356-020-11996-2

Khan, Z., & Doty, S. (2011). Endophyte-assisted phytoremediation. Plant Biology, 12, 97-105.

Kemper, T., & Sommer, S. (2002). Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology, 36(12), 2742-2747. https://doi.org/10.1021/es015747j

Kernaghan, G. (2005). Mycorrhizal diversity: Cause and effect? Pedobiologia, 49(6), 511-520. https://doi.org/10.1016/j.pedobi.2005.05.007

Kullu, B., Patra, D. K., Acharya, S., Pradhan, C., & Patra, H. K. (2020). AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica-a mycorrhizal phytoremediation approach. Chemosphere, 258, 127337. https://doi.org/10.1016/j.chemosphere.2020.127337

Kumar, N., Scheer, K., & Steenkamp, J. B. (1995). The Effects of Perceived Interdependence on Dealer Attitudes. Journal of Public Policy & Marketing, 32(3), 348-356. https://doi.org/10.1177/002224379503200309

Khush, G. S. (2000). Taxonomy and origin of rice. En R. K. Singh, U. S. Singh, &, G. S. Khush (Eds.), Aromatic rices (pp. 5-13). Oxford & IBH Publishing

Lakaew, K., Akeprathumchai, S., & Thiravetyan, P. (2021). Effect of calcium acetate and calcium chloride on grain morphology and antioxidant regulation in rice under ozone stress. Journal of Plant Growth Regulation, 1-15. https://doi.org/10.1007/s00344-021-10501-4

Lancashire, P. D., Bleiholder, H., Van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E., & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Bioogy, 119(3), 561-601. https://doi.org/10.1111/j.1744-7348.1991.tb04895.x

Lanfranco, L., Bolchi, A., Ros, E. C., Ottonello, S., & Bonfante, P. (2002). Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiology, 130(1), 58-67. https://doi.org/10.1104/pp.003525

Li, H., Gao, M. Mo, C., Wong, M., Chen, X., & Wang, J. (2022). Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice. Journal of Experimental Botany, 73(1,5), 50-67. https://doi.org/10.1093/jxb/erab444

Li, M. Q., Hasan, M. K., Li, C-X., Ahammed, G. J., Xia, X-J., Shi, K., Zhou, Y.-H., Reiter, R. J., Yu, J.-Q., Xu, M.-X, & Zhou, J. (2016). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 61(3), 291-302. https://doi.org/10.1111/jpi.12346

Li, Z., Liang, Y., Hu, H., Shaheen, S. M., Zhong, H., Tack, F. M. G., Wu, M., Li, Y.-F., Gao, Y., Rinklebe, J., & Zhao, J. (2021). Speciation, transportation, and pathways of cadmium in soil-rice systems: a review on the environmental implications and remediation approaches for food safety. Environment International, 156, 106749. https://doi.org/10.1016/j.envint.2021.106749

Liang, J., Feng, C., Zeng, G., Zhong, M., Gao, X., Li, X., He, X., Li, X., Fang, Y., & Mo, D. (2017). Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China. Chemosphere, 189, 198-205. https://doi.org/10.1016/j.chemosphere.2017.09.046

Liu, H., Zhang, J., Christie, P., & Zhang, F. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedling grown in soil. Science of The Total Environment, 394(2-3), 361-368. https://doi.org/10.1016/j.scitotenv.2008.02.004

Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment, 633, 206-219. https://doi.org/10.1016/j.scitotenv.2018.03.161

Liu, N., Jiang, Z., Li, X., Liu, H., Li, N., & Wei, S. (2020). Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Chemosphere, 241, 125106. https://doi.org/10.1016/j.chemosphere.2019.125106

Liu, Y., Tie, B., Li, Y., Lei, M., Wei, X., Liu, X., & Du, H., (2018). Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicology and Environmental Safety, 163, 223-229. https://doi.org/10.1016/j.ecoenv.2018.07.081

Luo, Q., Bai, B., Xie, Y., Yao, D., Zhang, D., Chen, Z., Zhuang, W., Deng, Q., Xiao, Y., & Wu, J. (2022). Effects of Cd uptake, translocation and redistribution in different hybrid rice varieties on grain Cd concentration. Ecotoxicology and Environmental Safety, 240, 113683. https://doi.org/10.1016/j.ecoenv.2022.113683

Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2010). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62(1), 21-37. https://doi.org/10.1093/jxb/erq281

Mahecha Pulido, J. D., Trujillo González, J. M., & Torres Mora, M. A. (2017). Análisis de estudios en metales pesados en zonas agrícolas de Colombia. Orinoquia, 21(1), 83-93. https://doi.org/10.22579/20112629.434

Magneschi, L., & Perata, P. (2009). Rice germination and seedling growth in the absence of oxygen. Annals of Botany, 103(2), 181-196. https://doi.org/10.1093/aob/mcn121

Malekzadeh, E., Alikhani, A. H., Savaghebi-Fioozabadi, R. G., & Zarei, M. (2011). Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish Journal of Agricultural Research, 9(4), 1213-1223. https://doi.org/10.5424/sjar/20110904-069-11

Meharg, A. A., & Cairney, J. W. G. (2000). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69-112. https://doi.org/10.1016/S0065-2504(08)60017-3

Mejía Sandoval, G. (2006). Aproximación teórica a la biosorción de metales pesados por medio de microorganismos. CES Medicina Veterinaria y Zootecnia, 1(1), 77-99.

Mendieta Webster, C., & Taisigüe López, K. (2014). Acumulación y traslocación de metales, metaloides y no metales en plantas nativas de la zona minera de Chontales: implicaciones para el potencial de fito-remediación. https://biorem.univie.ac.at/fileadmin/user_upload/p_biorem/education/research/methods/Accumulation-and-Translocation-metals-in-nativeplants_Extended-abstract.pdf

Miransari, M. (2017). Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. En Q.-S. Wu (Ed.), Arbuscular Mycorrhizas and Stress Tolerance of Plants (pp. 147-161). Springer. https://doi.org/10.1007/978-981-10-4115-0_7

Mora Valencia, C. A., & Berbeo Rodríguez, M. L. (2010). Manual de gestión integral de residuos. Subdirección Red Nacional de Laboratorios.

Mosquera González, S. D. (2020). Metodología para el análisis de riesgo por exposición a arsénico, cadmio y plomo por consumo de arroz en Colombia [Tesis de maestría, Universidad de los Andes]. Repositorio Uniandes. https://repositorio.uniandes.edu.co/handle/1992/48675?locale-attribute=en

Muñoz-Silva, L., Olivera-Gonzales, P. Santillán-Torres, M., & Tamariz-Angeles, C. (2019). Microorganismos tolerantes a metales pesados del pasivo minero Santa Rosa, Jangas (Perú). Revista Peruana de Biología, 26(1), 109-118. https://doi.org/10.15381/rpb.v26i1.15914

Nayuki, K., Chen, B., Ohtomo, R., & Kuga, Y. (2014). Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 29(1), 60-66. https://doi.org/10.1264/jsme2.ME13093

Nawaz, A., Rehman, A. U., Rehman, A., Ahmad, S., Siddique, K. M., & Farooq, M. (2022). Increasing sustainability for rice production systems. Journal of Cereal Science, 103, 103400. https://doi.org/10.1016/j.jcs.2021.103400

Nazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., & Khan, N. A. (2012). Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Sciences, 3(10), 1476. https://doi.org/10.4236/ajps.2012.310178

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2021). Database of Food and Agricultural Organization. El Espinal, Tolima. https://www.fao.org/faostat/en/#data/QCL

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2022). Nota Informativa de la FAO sobre la Oferta y la demanda de Cereales. https://www.fao.org/worldfoodsituation/csdb/es/

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO], & Programa de las Naciones Unidas para el Medio Ambiente [PNUMA]. (1983). Directrices para el control de la degradación de suelos.

Pál, M., Csávás, G., Szalai, G., Oláh, T., Khalil, R., Yordanova, R., Gell, G., Birinyi, Z., Németh, E., & Janda, T. (2017). Polyamines may influence phytochelatin synthesis during Cd stress in rice. Journal of Hazardous Materials, 340, 272-280. https://doi.org/10.1016/j.jhazmat.2017.07.016

Parvin, S., Van Geel, M., Yeasmin, T., Lievens, B., & Honnay, O. (2019). Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Science of The Total Environment, 686, 546-554. https://doi.org/10.1016/j.scitotenv.2019.05.450

Pedroso, D. de F., Barbosa, M. V., Dos Santos, J. V., Araújo Pinto, F., Siquiera, J. O., & Carbone Carneiro, M. A. (2018). Arbuscular mycorrhizal fungi favor the initial growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in soil contaminated with Zn, Cu, Pb, and Cd. Bulletin of Environmental Contamination and Toxicology, 101, 386-391. https://doi.org/10.1007/s00128-018-2405-6

Phillips, J. M, & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-160. https://doi.org/10.1016/S0007-1536(70)80110-3

Puig, S., & Peñarrubia, L. (2009). Placing metal micronutrients in context: transport and distribution in plants. Current Opinion in Plant Biology, 12(3), 299-306. https://doi.org/10.1016/j.pbi.2009.04.008

Qian, L., Zhang, W., Yan, J., Han, L., Gao, W., Liu, R., & Chen, M. (2016). Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresource Technology, 206, 217-224. https://doi.org/10.1016/j.biortech.2016.01.065

Quintella, C. M., Mata, A. M., & Lima, L. C. P. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Management, 241, 156-166. https://doi.org/10.1016/j.jenvman.2019.04.019

Rahman, S. U., Xuebin, Q., Kamran, M., Yasin, G., Cheng, H., Rehim, A., Riaz, L., Rizwan, M., Ali, S., Abdullah A. A., & Alyemeni, M. N. (2021). The interactive effect of pH variation and cadmium stress on wheat (Triticum aestivum L.) growth, physiological and biochemical parameters. Plos one, 16(7), e0253798. https://doi.org/10.1016/j.plaphy.2021.05.038

Raicevic, S., Wright, J. V., Veljkovic, V., & Conca, J. L. (2006). Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium. Science of The Total Environment, 355(1-3), 13-24. https://doi.org/10.1016/j.scitotenv.2005.03.006

Ramírez, M. M. (2003). Biofertilizantes y nutrición de plantas. En M. P. Triana, R. Lora, L. Gómez, & G. Peñalosa (Eds.), Manejo integral de la fertilidad del suelo (pp. 153-163). Sociedad Colombiana de la Ciencia del Suelo.

Ramírez Gómez, M., & Rodríguez, A. (2012). Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión. Revista Colombiana de Biotecnología, XIV(1), 271-284.

Ramtahal, G., Chang Yen, I., Seegobin, D., Bekele, I., Bekele, F., Wilson, L., & Harrynanan, L. (2012). Investigation of the effects of mycorrhizal fungi on cadmium accumulation in cacao. En Proceedings of the Caribbean Food Crops Society. 48th Annual Meeting (pp. 147-152). Caribbean Food Crops Society.

Raven Willwater, K. P. (2018). Efecto del Cadmios sobre crecimiento y composición elemental de la alfalfa en cultivos de arena. Anales Científicos, 79(2), 406-414. https://doi.org/10.21704/ac.v79i2.912

Ravichanthiran, K., Ma, Z. F., Zhang, H., Cao, Y., Wang, C. W., Iammad, S., Aglago, E. K., Zhang, Y., Jin, Y, & Pan, B. (2018). Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants, 7(6), 71. https://doi.org/10.3390/antiox7060071

Redecker, D. (2008). Glomeromycota. Arbuscular mycorrhizal fungi and their relative(s). http://tolweb.org/Glomeromyco[1]ta/28715/2008.01.14

Remy, W., Taylor, T. N., Hass, H., & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, 91(25), 11841-11843. https://doi.org/10.1073/pnas.91.25.11841

Reeves, J. B., McCarty, G. W., & Reeves, V. B. (2001). Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. Journal of Agricultural and Food Chemistry, 49(2), 766-772. https://doi.org/10.1021/jf0011283

Rizwan, M., Ali, S., Hussain, A., Ali, Q., Shakoor, M. B., Zia-ur-Rehman, M., Farid, M., & Asma, M. (2017). Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere, 187, 35-42. https://doi.org/10.1016/j.chemosphere.2017.08.071

Rizvi, A., Zaidi, A., Ameen, F., Ahmed, B., AlKahtani, M. D., & Khan, M. S. (2020). Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Advances, 10(63), 38379-38403. https://doi.org/10.1039/D0RA05610C

Rodríquez-Serrano, M., Martínez de la Casa, N. Romero-Puertas, M. C., Del Río, L. A., & Sandalio, L. M. (2008). Toxicidad del Cadmio en Plantas. Ecosistemas, 17(3), 139-146.

Rodushkin, I., Ruthb, T., & Huhtasaari, A. (1999). Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Analytica Chimica Acta, 378(1-3), 191-200. https://doi.org/10.1016/S0003-2670(98)00635-7

Römheld, V. (1991). The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant and Soil, 130, 127-134. https://doi.org/10.1007/BF00011867

Ronzan, M., Piacentini, D., Fattorini, L., Della Rovere, F., Eiche, I Riemann, M., Altamura, M. M., & Falasca, G. (2018). Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environmental and Experimental Botany, 151, 64-75. https://doi.org/10.1016/j.envexpbot.2018.04.008

Roveda, G., Ramírez, M., Peñaranda, A., & Cabra, L. (2009). Biofertilización en el cultivo de la mora (Rubus glaucus Benth). En L. S. Barrero Meneses (Ed.), Caracterización, evaluación y producción de material limpio de mora con alto valor agregado (pp. 43-56). Corporación Colombiana de Investigación Agropecuaria (Corpoica).

Roveda, G., Ramírez, M., & Peñaranda, A. (2009). The effect of symbiotic association between arbuscular mycorrhizal fungi and Physalis peruviana in crop nutrition [Conferencia]. 6th International Conference on Mycorrhiza "Beyond the Roots". Belo Horizonte, Brasil.

Samet, H., Çikili, Y., & Atikmen, N.Ç. (2017). Role of Potassium in Alleviation of Cadmium Toxicity in Sunflower Helianthus annuus L. Journal of Agricultural Faculty of Gaziosmanpasa University, 34(1), 179-88. https://doi.org/10.13002/jafag4197

Sanders, I. R., & Croll, D. (2010). Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annual Review of Genetics, 44(44), 271-292. https://doi.org/10.1146/annurev-genet-102108-134239

Sebastian, A., & Vara Prasad, M. N. (2014). Cadmium minimization in rice. A review. Agronomy for Sustainable Development, 34(1), 155-173. https://doi.org/10.1007/s13593-013-0152-y

Sebastian, A., Nangia, A., & Van Prasad, M. N. (2018). A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. Journal of Cleaner Production, 174, 355-366. https://doi.org/10.1016/j.jclepro.2017.10.343

Seguel, A., Rubio, R., Carrillo, R., Espinosa, A., & Borie, F. (2008). Niveles de glomalina y su relación con características químicas y biológicas del suelo (andisol) en un relicto de bosque nativo del sur de Chile. Bosque (Valdivia), 29(1), 11-22. https://doi.org/10.4067/S0717-92002008000100002

Sharma, S., Pant, D., Singh, S., Sinha, R., & Adholeya, A. (2007). Chapter 7: Mycorrhizae in Indian Agriculture. Effect of pollution and metal toxicity on Mycorrhizal colonization and plant growth. En C. Hamel, & C. Plenchette (Eds.), Mycorrhizae in crop production (pp. 239-291). Haworth Press.

Sharpley, A. N., Weld, J. L., Beegle, D. B., Kleinman, P.J., Gburek, W., Moore, P., & Mullins, G. (2003). Development of phosphorus indices for nutrient management planning strategies in the United States. Journal of Soil and Water Conservation, 58(3), 137-152.

Shi, G., Cai, Q., Liu, C., & Wu, L. (2010). Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation, 61, 45-52. https://doi.org/10.1007/s10725-010-9447-z

Shi, Z., Carey, M., Meharg, C., Williams, P. N., Signes-Pastor, A. J., Triwardhani, E. A., Pandiagan, F. I., Campbell, K., Elliott, C., Marwa, E., Jiujin, X., Gomes Farias, J., Texeira Nicoloso, F., De Silva, P. M., Lu, Y., Norton, G., Adomako, E., Green, A., Moreno-Jiménez, E., ... & Meharg, A. A. (2020). Rice grain cadmium concentrations in the global supply-chain. Exposure and Health, 12(4), 869-876. https://doi.org/10.1007/s12403-020-00349-6

Shi, T., Ma, J., Wu, F., Ju, T., Gong, Y., Zhang, Y., Wu, X., Hou, H., Shao, L., & Shi, H. (2019). Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in Zhejiang Province, China. Science of the Total Environment, 649, 1269-1280. https://doi.org/10.1016/j.scitotenv.2018.08.414

Shi, T., Zhang, J., Shen, W., Wang, J., & Li, X. (2022). Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China. Ecotoxicology and Environmental Safety, 245, 114107. https://doi.org/10.1016/j.ecoenv.2022.114107

Siripornadulsil, S., & Siripornadulsil, W. (2013). Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicology and Environmental Safety, 94, 94-103. https://doi.org/10.1016/j.ecoenv.2013.05.002

Smirnova, S. V., Ilin, D. V., & Pletnev, I. V. (2021). Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta, 221, 121485. https://doi.org/10.1016/j.talanta.2020.121485

Smith, S., & Read, D. (2008). Mycorrhizal Symbiosis (3.a ed.). Academic Press.

So, H. B., & Ringrose-Voase, A. J. (2000). Management of clay soils for rainfed lowland rice-based cropping systems: an overview. Soil and Tillage Research, 56(2), 3-14. https://doi.org/10.1016/S0167-1987(00)00119-7

Sohag, A. A. M., Tahjib-Ul-Arif, M., Polash, M. A. S., Belal Chowdhury, M., Afrin, S., Burritt, D. J., Murata, Y., Hossain, M. A., & Hossain, M. (2020). Exogenous glutathione-mediated drought stress tolerance in rice (Oryza sativa L.) is associated with lower oxidative damage and favorable ionic homeostasis. Iranian Journal of Science and Technology, Transactions A: Science, 44, 955-971. https://doi.org/10.1007/s40995-020-00917-0

Souri, Z., Karimi, N., & Sandalio, L. M. (2017). Arsenic hyperaccumulation strategies: An overview. Frontiers in Cell and Developmental Biology, 5, 67. https://doi.org/10.3389/fcell.2017.00067

Spagnoletti, F. N., Lavado, R. S., & Giacometti, R. (2018). Interaction of plants and arbuscular mycorrhizal fungi in responses to arsenic stress: A collaborative tale useful to manage contaminated soils. En M. Hasanuzzaman, K. Nahar, & M. Fujita (Eds.), Mechanisms of Arsenic Toxicity and Tolerance in Plants (pp. 239-255). Springer. https://doi.org/10.1007/978-981-13-1292-2_10

Sylvia, D. M, Fuhrmannn, J. J., Hartel, P. G., & Zuberer, D. A. (2005). Principles and applications of soil microbiology. Pearson; Prentice Hall.

Tamayo, E., Gómez-Gallego, T., Azcón-Aguilar, C., & Ferrol, N. (2014). Genomewide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant Membrane Traffic and Transport, 5, 547. https://doi.org/10.3389/fpls.2014.00547

The Observatory of Economic Complexity [OEC]. (2022). Arroz en Colombia. https://oec.world/es/profile/bilateral-product/rice/reporter/col#:~:text=Importaciones%3A%20En%202020%2C%20Colombia%20import%C3%B3,60%20m%C3%A1s%20importado%20en%20Colombia

Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., dit Frey, N. F., Gianinazzi-Pearson, V., Gilbert, L. B., Handa, Y., Herr, J., Hijri, M., Koul, R., Kawaguchi, M., Krajinski, F., Lammers, P., Masclaux, F., Murat, C, Morin, E.,… Martin, F. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, 110(50), 20117-20122. https://doi.org/10.1073/pnas.1313452110

Toppo, N. N., Maiti, D., & Srivastava, A. K. (2012). Native arbuscular mycorrhizal fungal diversity in rice-based cropping system under rainfed ecosystem. Columban Journal Of Life Sciences, 13, 79-85.

Torrente Trujillo, A., Calderón Manchola, L. V., & Joven Santofimio, E. M. (2020). Metales en suelos productores de arroz del distrito Juncal, Huila - Colombia. Suelos Ecuatoriales, 50(1 y 2), 1-12. https://doi.org/10.47864/SE(50)2020p1-12_121

Unz, R. F., & Shuttleworth, K. L. (1996). Microbial mobilization and immobilization of heavy metals. Current Opinion in Biotechnology, 7(3), 307-310. https://doi.org/10.1016/S0958-1669(96)80035-8

Uraguchi, S., Mori, S., Kurumata, M., Kawasaki, A., Arao, T., e Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677-2688. https://doi.org/10.1093/jxb/erp119

Urango Baquero, M. del P., & Marrugo Negrete, J. L. (2017). Estrategias para disminuir la absorción de mercurio en arroz (Oryza sativa) cultivado en suelos contaminados. http://cici.unillanos.edu.co/media2016/memorias/CICI_2016_paper_93.pdf

Verola Mataveli, R. L., Buzzo, M. L., Juncioni de Arauz, L., Henriques Carvalho, M. de F., Kumagai Arakaki, E. E., Matsuzaki, R., & Tiglea, P. (2016). Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS. Journal of Analytical Methods in Chemistry, 2016. https://doi.org/10.1155/2016/3968786

Volque Sepúlveda, T., Velasco Trejo, J. A., & De la Rosa, D. A. (2005). Suelos contaminados por metales y metaloides: muestreo y alternativas para su remediación. Secretaría de Medio Ambiente y Recursos Naturales; Instituto de Ecología

Vodnik, D., Grčman, H., Maček, I., Van Elteren, J. T., & Kovačevič, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of The Total Environment, 392(1), 130-136. https://doi.org/10.1016/j.scitotenv.2007.11.016

Vymazal, J., Kröpfelová, L., Švehla, J., Chrastný, V., & Štíchová, J. (2009). Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecological Engineering, 35(2), 303- 309. https://doi.org/10.1016/j.ecoleng.2008.04.007

Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002

Wang, M. Y., Chen, A. K., Wong, M. H., Qiu, R. L., Cheng, H., & Ye, Z. H. (2011). Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution, 159(6), 1730-1736. https://doi.org/10.1016/j.envpol.2011.02.025

Wang, E., Schornack, S., Marsh, J. F., Gobbato, E., Schwessinger, B., Eastmond, P., & Oldroyd, G. E. (2012). A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 22(23), 2242-2246. https://doi.org/10.1016/j.cub.2012.09.043

Wang, B., Wang, Q., Liu, W., Liu, X., Hou, J., Teng, Y., Luo, Y., & Christie, P. (2017). Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere, 182, 137-142. https://doi.org/10.1016/j.chemosphere.2017.04.123

Wei, J.-L., Lai, H.-Y., & Chen, Z.-S. (2012). Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana. Ecotoxicology and Environmental Safety, 84, 173-178. https://doi.org/10.1016/j.ecoenv.2012.07.004

Wu, Y. Z., Chen, J., Ji, J. F., Tian, Q. J., & Wu, X. M. (2005). Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Environmental Science & Technology 39(3), 873-878. https://doi.org/10.1021/es0492642

Wu, J., Guo, J., Hu, Y., & Gong, H. (2015). Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 6, 453. https://doi.org/10.3389/fpls.2015.00453

Wu, S., Zhang, X., Huang, L., & Chen, B. (2019). Arbuscular mycorrhiza and plant chromium tolerance. Soil Ecology Letters, 1, 94-104. https://doi.org/10.1007/s42832-019-0015-9

Xavier M., & Rodrigues B. F. (2020). Identification of Dominant Arbuscular Mycorrhizal Fungi in different Rice Ecosystems. Agricultural Research, 9(1), 46-55. https://doi.org/10.1007/s40003-019-00404-y

Xin, J., Huang, B., Yang, Z., Yuan, J., Dai, H., & Qiu, Q. (2010). Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials, 175(1-3), 468-476. https://doi.org/10.1016/j.jhazmat.2009.10.029

Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167-179. https://doi.org/10.1016/j.sajb.2009.10.007

Yang, Y., Chen, J., Huang, Q., Tang, S., Wang, J., Hu, P., & Shao, G. (2018). Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilization in soils. Chemosphere, 193, 547- 556. https://doi.org/10.1016/j.chemosphere.2017.11.061

Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C., & Lin, Y. (2022). Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells, 11(3), 569. https://doi.org/10.3390/cells11030569

Zhang, Q., Chen, H., Xu, C., Zhu, H., & Zhu, Q. (2019). Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes. Environmental and Experimental Botany, 162, 392-398. https://doi.org/10.1016/j.envexpbot.2019.03.004

Zhang, X., Zhang, P., Hu, Y., Liu, Y., Feng, S., Guo, D., & Dang, X. (2021). Immobilization of cadmium in soil and improved iron concentration and grain yields of maize (Zea mays L.) by chelated iron amendments. Environmental Science and Pollution Research, 28(38), 53161-53170. https://doi.org/10.1007/s11356-021-14523-z

Zhang, Z., Mallik, A., Zhang, J., Huang, Y., & Zhou, L. (2019). Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil and Tillage Research, 194, 104340. https://doi.org/10.1016/j.still.2019.104340

Zhi, Y., Sun, T., & Zhou, Q. X. (2014). Assessment of lead tolerance in 23 Chinese soybean cultivars and the effect of lead on their mineral ion complement. Environmental Science and Pollution Research, 21, 12909-12921. https://doi.org/10.1007/s11356-014-3181-4

Zhu, R., Zheng, Z., Li, T., He, S., Zhang, X., Wang, Y., & Liu, T. (2019). Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environmental Science and Pollution Research, 26, 1973-1982. https://doi.org/10.1007/s11356-018-3782-4

Publicado
2023-06-29
Tipología
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Detalles sobre este monográfico

ISBN-13 (15)
978-958-740-638-2